Latte pastorizzato fermentato
Media gradimento : 7
| Valutazione | N. Esperti | Valutazione | N. Esperti |
|---|---|---|---|
| 1 | 6 | ||
| 2 | 7 | ||
| 3 | 8 | ||
| 4 | 9 | ||
| 5 | 10 |
Contro:
Allergene (1)0 pt da Al222
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.Valuta | Dove si trova? |
| "Descrizione" su Latte pastorizzato fermentato di Al222 (23254 pt) | 28-ott-2025 09:58 |
| Leggi il Tiiip completo | (Invia il tuo commento) |
Latte pastorizzato fermentato (pasteurized cultured milk)
Descrizione
• Prodotto lattiero ottenuto da latte fermentato con colture lattiche selezionate e successivamente pastorizzato/termizzato per inattivare i microrganismi vivi (non “con fermenti vivi”).
• Profilo sensoriale lattico-acidulo, fresco e pulito; consistenza da bevibile a cucchiaio a seconda del processo e dell’eventuale uso di stabilizzanti.
• Indicato quando si desidera stabilità microbiologica maggiore e profilo organolettico costante; non può rivendicare effetti da probiotici, ma conserva metaboliti e postbiotici termostabili.
Valore calorico (per 100 g di prodotto)
• Intero “plain” (senza zuccheri aggiunti): ~60–70 kcal; proteine ~3,3–4,0 g; carboidrati (lattosio residuo) ~3,5–5,0 g; grassi ~3,0–3,8 g.
• Parzialmente scremato: ~45–55 kcal; proteine ~3,5–4,0 g; grassi ~1,5–2,0 g.
• Magro/0–0,1% grassi: ~35–45 kcal; proteine ~3,8–4,5 g; grassi ≤0,2 g.
• Profilo dei grassi (prodotto intero, per 100 g): SFA ~2–2,5 g; MUFA ~0,8–1,2 g; PUFA ~0,1–0,2 g (prevalenza n-6; n-3 in tracce, quota di MCT piccola).
Principali sostanze contenute
• Proteine del latte (caseine e sieroproteine); peptidi da fermentazione.
• Carboidrati: lattosio ridotto rispetto al latte; galattosio; eventuali zuccheri aggiunti nelle versioni dolci.
• Lipidi: trigliceridi con fosfolipidi; SFA prevalenti, MUFA/PUFA minori.
• Metaboliti della fermentazione: acido lattico, acetaldeide, diacetile; EPS (esopolisaccaridi) se prodotti dagli starter.
• Vitamine/minerali: B2, B12, A (nei prodotti interi), calcio, fosforo, potassio.
• Parametri tipici: pH finale ~4,2–4,6; acidità titolabile; viscosità/sineresi secondo stile.
Processo di produzione
• Standardizzazione latte (grassi/proteine) → omogeneizzazione → pastorizzazione del latte.
• Inoculo di colture lattiche (termofile/mesofile) → fermentazione controllata a 20–45 °C fino a pH ~4,2–4,6.
• Post-pastorizzazione/termizzazione del prodotto fermentato (inattivazione colture) → raffreddamento rapido.
• Confezionamento asettico o hot-fill; catena del freddo; controlli GMP/HACCP.
• Opzionali: stabilizzanti (pectine, amidi), frutta/aromi; versioni senza lattosio tramite idrolisi enzimatica.
Proprietà sensoriali e tecnologiche
• Acidità e aromi lattici puliti; consistenza modulabile con processo/EPS/stabilizzanti.
• Funzionalità: base acidificante, leggera testurizzazione; in cottura attenua dolcezza e dona umidità.
• Compatibilità: possibile sineresi se sottoposto a stress termici; stabilità maggiore di un latte fermentato “vivo”.
Impieghi alimentari
• Consumo diretto (bevibile o cremoso); colazioni, smoothie, dessert.
• Cucina: condimenti acidi leggeri, marinature, prodotti da forno, gelati/semifreddi.
• Industria: basi per salse e piatti pronti dove si richiedono profilo stabile e shelf-life prolungata.
Nutrizione e salute
• Digeribilità: lattosio ridotto rispetto al latte (tolleranza variabile; non sempre sufficiente nei malassorbenti).
• Proteine ad alta qualità; possibile presenza di postbiotici (metaboliti/cellulari inattivati).
• Grassi: prevalenza SFA con presenza di MUFA/PUFA; n-3 modesti salvo arricchimenti.
• Niente claim probiotici (colture inattive); le indicazioni salutistiche devono rispettare la normativa.
Qualità e specifiche (temi tipici)
• pH 4,2–4,6; acidità titolabile; viscosità/sineresi; assenza di patogeni; cariche totali conformi.
• Assenza di CFU significative delle specie starter a fine shelf-life (per definizione di termizzato/post-pastorizzato).
• Etichettatura: indicazioni chiare su “post-pastorizzato/termizzato”, zuccheri aggiunti, aromi, allergeni.
Conservazione e shelf-life
• Mantenere a 0–4 °C, al riparo da luce/sbalzi termici; non interrompere la catena del freddo.
• Shelf-life tipica 2–8 settimane secondo processo/confezione; dopo l’apertura consumare entro 2–5 giorni.
• Evitare congelamento (instabilità di texture).
Allergeni e sicurezza
• Contiene latte e derivati (allergene maggiore).
• Non adatto a allergia alle proteine del latte; cautela in intolleranza al lattosio se non “senza lattosio”.
• Materie prime e impianti sotto GMP/HACCP; valutare BOD/COD degli effluenti di processo.
Funzioni INCI in cosmesi
• Voci tipiche correlate: Lactobacillus Ferment Filtrate, Milk Ferment Filtrate, Yogurt Powder.
• Ruoli: skin conditioning, blando postbiotico/lenitivo, lieve umettanza in maschere/leave-on delicati.
Troubleshooting
• Sineresi e separazione: gel debole/sovra-acidificazione → ottimizzare starter, EPS, omogeneizzazione/stabilizzanti.
• Sapore troppo acido: inoculo elevato o tempi lunghi → ridurre inoculo/tempo o correggere con blend dolci/cremosi.
• Granulosità: stress termici post-fermentazione → curva termica più dolce e raffreddamento rapido.
• Gas/gonfiore: contaminazioni → rinforzare igiene e controllo aria/filtri.
Sostenibilità e filiera
• Gestione effluenti con target BOD/COD; valorizzazione del siero di filiera quando presente.
• Imballaggi riciclabili e logistica a freddo ottimizzata; efficienza energetica nei cicli termici.
• Sistema GMP/HACCP per qualità costante e riduzione scarti.
Conclusione
Il latte pastorizzato fermentato offre stabilità e costanza sensoriale proprie dei prodotti termizzati, mantenendo i benefici tecnologici della fermentazione (acidità, corpo, aromi). Il successo applicativo dipende da scelta degli starter, curva termica post-fermentazione, protezione a freddo e formulazione.
Mini-glossario
• SFA — Grassi saturi: da moderare; eccessi possono aumentare LDL.
• MUFA — Grassi monoinsaturi (es. oleico): tendenzialmente favorevoli/neutrali per il profilo lipidico.
• PUFA — Grassi polinsaturi (n-6/n-3): benefici se bilanciati.
• n-6 / n-3 — Famiglie di PUFA (omega-6/omega-3): rapporto equilibrato preferibile.
• MCT — Trigliceridi a media catena: assorbimento rapido; quota piccola nel grasso del latte.
• ALA/EPA/DHA — Acidi grassi omega-3: ALA precursore vegetale; EPA/DHA marini (nei latticini sono in tracce).
• TFA — Acidi grassi trans: nei latticini presenti in tracce naturali; evitare quelli industriali.
• CFU — Colony forming units: unità formanti colonia; misura dei microrganismi vivi (assenti/irrilevanti nei prodotti post-pastorizzati).
• EPS — Esopolisaccaridi: polimeri prodotti dagli starter che migliorano viscosità e stabilità.
• pH — Indice di acidità/alcalinità; guida gelificazione, sapore e conservabilità.
• GMP — Good manufacturing practice: buone pratiche per igiene e coerenza di processo.
• HACCP — Hazard analysis and critical control points: sistema preventivo con CCP definiti.
• BOD/COD — Domanda biochimica/chimica di ossigeno: indicatori dell’impatto degli effluenti.
• FIFO — First in, first out: rotazione scorte che privilegia i lotti più vecchi.
• LDL — Lipoproteine a bassa densità: valori elevati aumentano il rischio cardiovascolare.
Bibliografia__________________________________________________________________________
Rizzoli R, Biver E. Effects of Fermented Milk Products on Bone. Calcif Tissue Int. 2018 Apr;102(4):489-500. doi: 10.1007/s00223-017-0317-9.
Abstract. Fermented milk products like yogurt or soft cheese provide calcium, phosphorus, and protein. All these nutrients influence bone growth and bone loss. In addition, fermented milk products may contain prebiotics like inulin which may be added to yogurt, and provide probiotics which are capable of modifying intestinal calcium absorption and/or bone metabolism. On the other hand, yogurt consumption may ensure a more regular ingestion of milk products and higher compliance, because of various flavors and sweetness. Bone mass accrual, bone homeostasis, and attenuation of sex hormone deficiency-induced bone loss seem to benefit from calcium, protein, pre-, or probiotics ingestion, which may modify gut microbiota composition and metabolism. Fermented milk products might also represent a marker of lifestyle promoting healthy bone health.
Branca F, Rossi L. The role of fermented milk in complementary feeding of young children: lessons from transition countries. Eur J Clin Nutr. 2002 Dec;56 Suppl 4:S16-20. doi: 10.1038/sj.ejcn.1601676.
Abstract. Probiotic bacteria are used for production of fermented dairy products. The use of probiotic bacteria has the potential to replenish the natural intestinal flora of the body. These bacteria competitively inhibit the growth and colonization of pathogenic bacteria. Breastmilk is the best food for babies, also from a probiotic point of view. Human milk, in fact, contains many substances that stimulate the growth of bifidobacteria in vitro and in the small intestine of infants. Improvement of lactose digestion and avoidance of symptoms of intolerance in lactose malabsorbers are the most profoundly studied health-relevant effects of fermented milk. In fact fermented milks are nutritionally similar to unfermented milk, except that some of lactose is broken down to glucose and galactose. The role of fermented milk in complementary feeding and in particular for the prevention of anaemia is an innovative theme, recently focused. Iron deficiency in infants and young children is widespread and has serious consequences for child health. Prevention of iron deficiency should therefore be given high priority. The too-early introduction of unmodified cow's milk and milk products is an important nutritional risk factors for the development of iron-deficiency anaemia. Fermented milks represent an excellent source of nutrients such as calcium, protein, phosphorus and riboflavin. During the fermentation of milk, lactic acid and other organic acids are produced and these increase the absorption of iron. If fermented milk is consumed at mealtimes, these acids are likely to have a positive effect on the absorption of iron from other foods.
Chen L, Bagnicka E, Chen H, Shu G. Health potential of fermented goat dairy products: composition comparison with fermented cow milk, probiotics selection, health benefits and mechanisms. Food Funct. 2023 Apr 24;14(8):3423-3436. doi: 10.1039/d3fo00413a.
Abstract. Goat milk as a preferable probiotic vehicle has been investigated and the contribution of fermented goat dairy products to the nutritional and economic wellbeing of the world is tremendous. This review presents the recent progress on fermented goat dairy products, including probiotic selection, composition comparison to fermented cow milk, health effects, and related mechanisms. Fermented goat milk maintains a better nutritional profile in comparison to fermented cow milk with higher values of protein, minerals (Ca, Mg, Fe, Cu, Zn and Se), vitamins (A, D3 and B12) and some fatty acids. Lactobacillus is the predominant genus used in goat milk fermentation and endows goat milk with higher functional value, including gut microbiota regulation, anti-microbial and anti-inflammatory functions, hypocholesterolemic effects, antioxidant effects, hypotensive effects, bone health, anemia recovery, anti-obesity, and anti-atherogenic function. The corresponding mechanisms have been elucidated at the molecular level. A series of collection on probiotics starters, fermentation strategy and characteristics of fermented goat dairy products are performed. Although the industrial applications of fermented goat milk remain underdeveloped, the improved functional annotation and fermentation strategy identified in this review provide a bright future and an excellent framework for the future fermented goat dairy market.
Ebringer L, Ferencík M, Krajcovic J. Beneficial health effects of milk and fermented dairy products--review. Folia Microbiol (Praha). 2008;53(5):378-94. doi: 10.1007/s12223-008-0059-1.
Abstract. Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.
Usinger L, Reimer C, Ibsen H. Fermented milk for hypertension. Cochrane Database Syst Rev. 2012 Apr 18;2012(4):CD008118. doi: 10.1002/14651858.CD008118.pub2.
Abstract. Background: Fermented milk has been suggested to have a blood pressure lowering effect through increased content of proteins and peptides produced during the bacterial fermentation. Hypertension is one of the major risk factors for cardiovascular disease world wide and new blood pressure reducing lifestyle interventions, such as fermented milk, would be of great importance. Objectives: To investigate whether fermented milk or similar products produced by lactobacilli fermentation of milk proteins has any blood pressure lowering effect in humans when compared to no treatment or placebo. Search methods: The Cochrane Central Register of Controlled Trials (CENTRAL), English language databases, including MEDLINE (1966-2011), EMBASE (1974-2011), Cochrane Complementary Medicine Trials Register, Allied and Complementary Medicine (AMED) (1985-2011), Food science and technology abstracts (1969-2011). Selection criteria: Randomised controlled trials; cross over and parallel studies evaluating the effect on blood pressure of fermented milk in humans with an intervention period of 4 weeks or longer. Data collection and analysis: Data was extracted individually by two authors, afterwards agreement had to be obtained before imputation in the review. Main results: A modest overall effect of fermented milk on SBP was found (MD -2.45; 95% CI -4.30 to -0.60), no effect was evident on DBP (MD -0.67; 95% CI -1.48, 0.14).
Ohsawa K, Uchida N, Ohki K, Nakamura Y, Yokogoshi H. Lactobacillus helveticus-fermented milk improves learning and memory in mice. Nutr Neurosci. 2015 Jul;18(5):232-40. doi: 10.1179/1476830514Y.0000000122.
Abstract. Objectives: To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. Methods: We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Results: Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). Discussion: These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.
Mathur H, Beresford TP, Cotter PD. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients. 2020 Jun 4;12(6):1679. doi: 10.3390/nu12061679.
Abstract. Consuming fermented foods has been reported to result in improvements in a range of health parameters. These positive effects can be exerted by a combination of the live microorganisms that the fermented foods contain, as well as the bioactive components released into the foods as by-products of the fermentation process. In many instances, and particularly in dairy fermented foods, the microorganisms involved in the fermentation process belong to the lactic acid group of bacteria (LAB). An alternative approach to making some of the health benefits that have been attributed to fermented foods available is through the production of 'fermentates'. The term 'fermentate' generally relates to a powdered preparation, derived from a fermented product and which can contain the fermenting microorganisms, components of these microorganisms, culture supernatants, fermented substrates, and a range of metabolites and bioactive components with potential health benefits. Here, we provide a brief overview of a selection of in vitro and in vivo studies and patents exclusively reporting the health benefits of LAB 'fermentates'. Typically, in such studies, the potential health benefits have been attributed to the bioactive metabolites present in the crude fermentates and/or culture supernatants rather than the direct effects of the LAB strain(s) involved.
Maruta H, Fujii Y, Toyokawa N, Nakamura S, Yamashita H. Effects of Bifidobacterium-Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism. Int J Mol Sci. 2024 Sep 14;25(18):9934. doi: 10.3390/ijms25189934.
Abstract. Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka-Long-Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity.
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.ValutaChiudi | (0 commenti) |
Leggi altri Tiiips su questo oggetto in Inglese (1)
Tipologia:   Natural Principali sostanze contenute:   Ultimo aggiornamento:   2025-10-28 09:57:07 | Rischio chimico:   |
