Diossido di silicio
Media gradimento : 5
| Valutazione | N. Esperti | Valutazione | N. Esperti |
|---|---|---|---|
| 1 | 6 | ||
| 2 | 7 | ||
| 3 | 8 | ||
| 4 | 9 | ||
| 5 | 10 |
10 pt da Ark90
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.Valuta | Dove si trova? |
| "Diossido di silicio studi" su Diossido di silicio Consenso relazione 10 di Ark90 (12472 pt) | 08-dic-2022 15:59 |
| Leggi il Tiiip completo | (Invia il tuo commento) |
Compendio degli studi più significativi con riferimento a proprietà, assunzione, effetti.
Dai C, Huang Y, Zhou Y. Research progress about the relationship between nanoparticles silicon dioxide and lung cancer. Zhongguo Fei Ai Za Zhi. 2014 Oct 20;17(10):760-4. doi: 10.3779/j.issn.1009-3419.2014.10.09.
Abstract. Nano-silicon dioxide widely distributed in plastic, rubber, ceramics, paint, adhesives, and many other fields, and it is the product of coal combustion. A growing evidence shows that nano-silicon dioxide has certain correlation with respiratory system disease. In this paper, we synthesized existing researches of domestic and abroad, summarized the lung toxicity of nanoparticles. This article are reviewed from the physical and chemical properties of nanoparticles silicon dioxide, exposure conditions and environment, and the pathogenic mechanism of nano-silicon dioxide.
Yoo NK, Jeon YR, Choi SJ. Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues. Int J Mol Sci. 2021 Jun 29;22(13):7035. doi: 10.3390/ijms22137035.
Abstract. Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods-precipitated and fumed procedures-which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.
Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG. Presence and risks of nanosilica in food products. Nanotoxicology. 2011 Sep;5(3):393-405. doi: 10.3109/17435390.2010.519836.
Abstract. This study uniquely describes all steps of the risk assessment process for the use of one specific nanomaterial (nanosilica) in food products. The aim was to identify gaps in essential knowledge and the difficulties and uncertainties associated with each of these steps. Several food products with added silica (E551) were analyzed for the presence, particle size and concentration of nanosilica particles, using experimental analytical data, and the intake of nanosilica via food was estimated. As no information is available on the absorption of nanosilica from the gastrointestinal tract, two scenarios for risk assessment were considered. The first scenario assumes that the silica is absorbed as dissolved silica, while the second scenario assumes that nanosilica particles themselves are absorbed from the gastrointestinal tract. For the first scenario no adverse effects are expected to occur. For the second scenario there are too many uncertainties to allow proper risk assessment. Therefore, it is recommended to prioritize research on how nanosilica is absorbed from the gastrointestinal tract.
Fruijtier-Pölloth C. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch Toxicol. 2016 Dec;90(12):2885-2916. doi: 10.1007/s00204-016-1850-4.
Abstract. Synthetic amorphous silica (SAS) meeting the specifications for use as a food additive (E 551) is and has always been produced by the same two production methods: the thermal and the wet processes, resulting in E 551 products consisting of particles typically in the micrometre size range. The constituent particles (aggregates) are typically larger than 100 nm and do not contain discernible primary particles. Particle sizes above 100 nm are necessary for E 551 to fulfil its technical function as spacer between food particles, thus avoiding the caking of food particles. Based on an in-depth review of the available toxicological information and intake data, it is concluded that the SAS products specified for use as food additive E 551 do not cause adverse effects in oral repeated-dose studies including doses that exceed current OECD guideline recommendations. In particular, there is no evidence for liver toxicity after oral intake. No adverse effects have been found in oral fertility and developmental toxicity studies, nor are there any indications from in vivo studies for an immunotoxic or neurotoxic effect. SAS is neither mutagenic nor genotoxic in vivo. In intact cells, a direct interaction of unlabelled and unmodified SAS with DNA was never found. Differences in the magnitude of biological responses between pyrogenic and precipitated silica described in some in vitro studies with murine macrophages at exaggerated exposure levels seem to be related to interactions with cell culture proteins and cell membranes. The in vivo studies do not indicate that there is a toxicologically relevant difference between SAS products after oral exposure. It is noted that any silicon dioxide product not meeting established specifications, and/or produced to provide new functionality in food, requires its own specific safety and risk assessment.
Casey TR, Bamforth CW. Silicon in beer and brewing. J Sci Food Agric. 2010 Apr 15;90(5):784-8. doi: 10.1002/jsfa.3884.
Abstract. Background: It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. Results: Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. (c) 2010 Society of Chemical Industry.
Givens BE, Diklich ND, Fiegel J, Grassian VH. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions. Biointerphases. 2017 May 3;12(2):02D404. doi: 10.1116/1.4982598.
Abstract. Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO2) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO2 nanoparticles, whereas for SiO2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO2 complex with a value of ca. 3 ± 1 × 1011 molecules cm-2. Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).
Kim JH, Kim CS, Ignacio RM, Kim DH, Sajo ME, Maeng EH, Qi XF, Park SE, Kim YR, Kim MK, Lee KJ, Kim SK. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine. 2014 Dec 15;9 Suppl 2(Suppl 2):183-93. doi: 10.2147/IJN.S57934.
Abstract. Silicon dioxide (SiO2) nanoparticles (NPs) have been widely used in the biomedical field, such as in drug delivery and gene therapy. However, little is known about the biological effects and potential hazards of SiO2. Herein, the colloidal SiO2 NPs with two different sizes (20 nm and 100 nm) and different charges (L-arginine modified: SiO2 (EN20[R]), SiO2 (EN100[R]); and negative: SiO2 (EN20[-]), SiO2 (EN100[-]) were orally administered (750 mg/kg/day) in female C57BL/6 mice for 14 days. Assessments of immunotoxicity include hematology profiling, reactive oxygen species generation and their antioxidant effect, stimulation assays for B- and T-lymphocytes, the activity of natural killer (NK) cells, and cytokine profiling. In vitro toxicity was also investigated in the RAW 264.7 cell line. When the cellularity of mouse spleen was evaluated, there was an overall decrease in the proliferation of B- and T-cells for all the groups fed with SiO2 NPs. Specifically, the SiO2 (EN20(-)) NPs showed the most pronounced reduction. In addition, the nitric oxide production and NK cell activity in SiO2 NP-fed mice were significantly suppressed. Moreover, there was a decrease in the serum concentration of inflammatory cytokines such as interleukin (IL)-1β, IL-12 (p70), IL-6, tumor necrosis factor-α, and interferon-γ. To elucidate the cytotoxicity mechanism of SiO2 in vivo, an in vitro study using the RAW 264.7 cell line was performed. Both the size and charge of SiO2 using murine macrophage RAW 264.7 cells decreased cell viability dose-dependently. Collectively, our data indicate that different sized and charged SiO2 NPs would cause differential immunotoxicity. Interestingly, the small-sized and negatively charged SiO2 NPs showed the most potent in vivo immunotoxicity by way of suppressing the proliferation of lymphocytes, depressing the killing activity of NK cells, and decreasing proinflammatory cytokine production, thus leading to immunosuppression.
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.ValutaChiudi | (0 commenti) |
| "Descrizione" su Diossido di silicio Consenso relazione 10 di Ark90 (12472 pt) | 08-lug-2023 17:39 |
| Leggi il Tiiip completo | (Invia il tuo commento) |
Diossido di Silicio o Biossido di silicio, è un composto chimico molto comune, è un ossido di silicio. Il termine "biossido di silicio" deriva dagli elementi che lo compongono:
La sintesi del biossido di silicio può avvenire naturalmente o essere prodotta industrialmente. Ecco alcuni metodi comuni:
Si presenta in forma di polvere bianca con una dimensione nativa delle particelle da 5nm a 40nm con funzioni di riempimento, ispessimento, rinforzo e tissotropia di vari materiali.
Nell'industria viene utilizzata in forma di "Fumed silica" sintetizzata con metodo di pirolisi in cui i silani alogenati (clorosilano idrolizzato) reagiscono con ossigeno e idrogeno a temperatura elevata. Questo tipo di silice

viene utilizzata in numerosi settori industriali:
Da dove si ricava
Si trova nella crosta terrestre, nelle rocce in forma cristallina o amorfa.
A cosa serve e dove si usa
Alimentazione
In particolare, nell'alimentazione può essere usata nei cibi, integratori alimentari ed altro come antiagglomerante. Etichettata come additivo alimentare addensante E551 nella lista degli additivi alimentari europei ha la funzione di evitare agglomeramenti in sughi, integratori alimentari, sale da cucina, alimenti secchi. Gli «antiagglomeranti» sono sostanze che riducono la tendenza di particelle individuali di un prodotto alimentare ad aderire l’una all’altra. Ha anche funzione addensante.
Agente gelificante nella birra.
Farmaceutica
Nell'industria farmaceutica la silice colloidale migliora flusso delle polveri in quanto agisce sulla rottura della forza interparticellare delle particelle di silice aderenti alla superficie del prodotto. E' un agente addensante. Gli addensanti alimentari vengono normalmente utilizzati per agevolare l'ingestione di farmaci in forma di compresse. Alcuni addensanti influenzano direttamente la dissoluzione e la disintegrazione delle compresse e possono anche ritardarne la dissoluzione.
Non deve superare il 2% del peso totale del prodotto in cui è inserito.
Cosmetica
Agente abrasivo. Contiene particelle abrasive per rimuovere macchie o biofilm che si accumulano sullo strato corneo o sui denti. Bicarbonato di sodio, farina fossile, silice e molti altri hanno proprietà abrasive. Nei prodotti peeling o esfolianti utilizzati in dermatologia o in applicazioni cosmetiche sono contenuti agenti abrasivi in forma di microsfere sintetiche, tuttavia queste microsfere o particelle abrasive non sono biodegradabili e creano inquinamento negli ecosistemi acquatici.
Assorbente. Assorbe sostanze disperse o disciolte in soluzioni acquose, acqua/olio, olio/acqua.
Agente antiagglomerante. Agevola il flusso libero e previene ed impedisce l'aggregazione o l'agglomeramento delle sostanze presenti in una formulazione riducendo la tendenza di alcune particelle ad aderire tra loro.
Agente di carica. Regola il contenuto di acqua, diluisce altri solidi, può aumentare il volume di un prodotto per un miglior flusso, agisce come tampone contro gli acidi organici, aiuta a mantenere il pH della miscela entro un livello determinato.
Agente opacizzante. E' utile in formulazioni che possono rivelarsi traslucide o trasparenti per renderle opache e meno permeabili alla luce.
Agente di controllo della viscosità. Controlla e adatta, aumentando o diminuendo, la viscosità al livello richiesto per una stabilità chimica e fisica ottimale del prodotto e del dosaggio in gel, sospensioni, emulsioni, soluzioni.
Altri usi
Sicurezza
Per quanto riguarda la sua tossicità, ci si deve riferire a nanoparticelle, piuttosto che a milligrammi (2) in quanto la sua presenza deriva, soprattutto nell'ambiente, da plastica, gomma, ceramica, vernici, adesivi ed altro ed è anche il prodotto della combustione del carbone (3).
Il potenziale rischio di nanoparticelle da inquinamento atmosferico ha recentemente attirato una grande l'attenzione. Sebbene la tossicologia delle nanoparticelle sia stata studiata in modo approfondito, sono stati riportati pochi lavori sull'effetto combinato delle nanoparticelle di Biossido di silicio (SiO2) e dell'esposizione a freddo a livello cellulare.
Il problema della foschia ha un forte impatto sulla salute pubblica, ed è stata una preoccupazione diffusa negli ultimi anni. Gli studi hanno dimostrato che il particolato ultrafine (PM 0,1 ), che è equivalente alle nanoparticelle, è dannoso per l'uomo. L'uso crescente di nanoparticelle per una vasta gamma di applicazioni commerciali, industriali e biomediche ha portato a preoccupazioni per la sicurezza (4).
In questo studio, gli effetti genotossici di SiO2EN20(-) e SiO2EN100(-) sono stati chiariti usando quattro test di genotossicità, in protocolli standardizzati con sistema Good Laboratory Practice. Sebbene le diverse vie di esposizione di questo studio possano indurre genotossicità da Si O2 in diversi organi in sistemi in vivo, i dati suggeriscono che SiO2EN20(-) e SiO2EN100(-) non sono sostanze genotossiche sulla base delle linee guida del test dell'OCSE (5).
I risultati di questa ricerca hanno confermato che l'aggiunta di silice colloidale in microemulsione contemporaneamente caricata con vitamine C ed E ha migliorato la biodisponibilità cutanea delle vitamine per la sua duplice influenza sulle caratteristiche di consegna della microemulsione e sulle proprietà della pelle (6).
Su questo ingrediente sono stati selezionati gli studi più rilevanti con una sintesi dei contenuti:
Caratteristiche generali:
![]() | ![]() |
Sinonimi:
Bibliografia_______________________________________________________________________
(1) Tran DT, Majerová D, Veselý M, Kulaviak L, Ruzicka MC, Zámostný P. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients. Int J Pharm. 2019 Feb 10;556:383-394. doi: 10.1016/j.ijpharm.2018.11.066.
(2) Petrick L, Rosenblat M, Paland N, Aviram M. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol. 2016 Jun;31(6):713-23. doi: 10.1002/tox.22084.
(3) Dai C, Huang Y, Zhou Y. Research progress about the relationship between nanoparticles silicon dioxide and lung cancer. Zhongguo Fei Ai Za Zhi. 2014 Oct 20;17(10):760-4. Chinese. doi: 10.3779/j.issn.1009-3419.2014.10.09.
Hassankhani R, Esmaeillou M, Tehrani AA, Nasirzadeh K, Khadir F, Maadi H. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice. Environ Sci Pollut Res Int. 2015 Jan;22(2):1127-32. doi: 10.1007/s11356-014-3413-7.
(4) Zhang Y, Li X, Lin Y, Zhang L, Guo Z, Zhao D, Yang D. The combined effects of silicon dioxide nanoparticles and cold air exposure on the metabolism and inflammatory responses in white adipocytes. Toxicol Res (Camb). 2017 Jul 6;6(5):705-710. doi: 10.1039/c7tx00145b.
(5) Kwon JY, Kim HL, Lee JY, Ju YH, Kim JS, Kang SH, Kim YR, Lee JK, Jeong J, Kim MK, Maeng EH, Seo YR. Undetactable levels of genotoxicity of SiO2 nanoparticles in in vitro and in vivo tests. Int J Nanomedicine. 2014 Dec 15;9 Suppl 2(Suppl 2):173-81. doi: 10.2147/IJN.S57933. Erratum in: Int J Nanomedicine. 2015;10:4621.
(6) Rozman B, Gosenca M, Gasperlin M, Padois K, Falson F. Dual influence of colloidal silica on skin deposition of vitamins C and E simultaneously incorporated in topical microemulsions. Drug Dev Ind Pharm. 2010 Jul;36(7):852-60. doi: 10.3109/03639040903541187.
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.ValutaChiudi | (0 commenti) |
Leggi altri Tiiips su questo oggetto in Inglese (2)
Tipologia:   Chemical Principali sostanze contenute:   Ultimo aggiornamento:   2023-04-20 12:09:56 | Rischio chimico:   |

