What's New? Click "Highlights"
Mail
 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
PEG-15 Cocopolyamine
"Descrizione"
by Al222 (17650 pt)
2023-Jul-20 09:18

PEG-15 Cocopolyamine  is a chemical compound consisting of:

  • PEG or polyethylene glycol is a type of polymer obtained from ethylene oxide. The "15" indicates that polyethylene glycol has an average molecular weight of about 680 (about 15 ethylene oxide units). PEG is often used in cosmetics and personal care products due to its ability to act as a humectant, solvent and delivery system for other ingredients.
  • Cocopolyamine is a type of amine obtained from coconut oil. Amines are organic compounds that contain a basic nitrogen atom with a lone electron pair. In the context of cosmetics, amines derived from coconut oil are often used for their conditioning and emulsifying properties.

Description of the raw materials used in its production:

  • Polyethylene Glycol (PEG) - Polyethylene glycol is a polymer derived from ethylene oxide. It is produced by the polymerization of ethylene oxide molecules and can vary in molecular weight. PEG serves as the base component for PEG-15 cocopolyamine.
  • Cocopolyamine refers to a mixture of ethylene oxide and propylene oxide units combined with a compound derived from a fatty amine. The specific fatty amine used in the production of PEG-15 cocopolyamine may vary and can be derived from natural sources or synthesized chemically.

The synthesis process takes place in different steps:

  • Preparation of coconut oil and polyethylene glycol (PEG). Coconut oil, which contains a high percentage of fatty acids, is extracted from the flesh of the coconut. Polyethylene glycol is a polymer of ethylene oxide and is commercially available.
  • Reaction of cocopolyamine formation. Coconut oil fatty acids are reacted with a type of amine to form cocopolyamine.
  • PEGylation. Cocopolyamine is reacted with PEG in a process called PEGylation. This involves the attachment of PEG to cocopolyamine, forming PEG-15 Cocopolyamine.

The synthesis process takes place in different steps:

  • Preparation of coconut oil and polyethylene glycol (PEG). Coconut oil, which contains a high percentage of fatty acids, is extracted from the flesh of the coconut. Polyethylene glycol is a polymer of ethylene oxide and is commercially available.
  • Reaction of cocopolyamine formation. Coconut oil fatty acids are reacted with a type of amine to form cocopolyamine.
  • PEGylation. Cocopolyamine is reacted with PEG in a process called PEGylation. This involves the attachment of PEG to cocopolyamine, forming PEG-15 Cocopolyamine.

In its pure form, it is typically a clear to slightly yellowish liquid or semi-solid. However, the colour of the final product in which it is used can vary greatly depending on the other ingredients in the formulation. In hair care products, for example, the product may be white, cream-coloured or even dyed a certain colour.

What it is used for and where

Cosmetics

PEG-15 Cocopolyamine is used in cosmetics as a cationic surfactant, as an antistatic and as an emulsifying agent. 

  • Antistatic agent. Static electricity build-up has a direct influence on products and causes electrostatic adsorption. The antistatic ingredient reduces static build-up and surface resistivity on the surface of the skin and hair.
  • Surfactant - Emulsifying agent. Emulsions are thermodynamically unstable and are used to soothe or soften the skin and emulsify, so they need a specific, stabilising ingredient. This ingredient forms a film, lowers the surface tension and makes two immiscible liquids miscible. A very important factor affecting the stability of the emulsion is the amount of the emulsifying agent. Emulsifiers have the property of reducing the oil/water or water/oil interfacial tension, improving the stability of the emulsion and also directly influencing the stability, sensory properties and surface tension of sunscreens by modulating the filmometric performance.

PEG-15 Cocopolyamine as a cationic surfactant can be exploited to produce cationic nanosystems for DNA transport. In particular, the nanosystems are characterized by a positive surface charge and reproducible size (1). 


Medicine

Solid lipid nanoparticles (SLNs) consisting of tristearin or tribehenin, and monoolein aqueous dispersions (MADs) consisting of glyceryl-monoolein have been studied as potential nanocarriers for nucleic acids. The cationic character of nanocarriers was obtained by adding cationic surfactants, such as diisobutylphenoxyethyl-dimethylbenzyl ammonium chloride (DEBDA) or PEG-15 Cocopolyamine (PCPA), to the lipid composition. The products were characterised in terms of size and morphology by Cryo-TEM and PCS. The charge properties were determined by measuring the zeta potential. Our experimental protocol enabled us to obtain homogeneous and stable cationic nanosystems within 3-6 months of production. Assessment of cytotoxicity on HepG2 cells by MTT assays indicated that MAD preparations were less toxic than SLN, and in general PCPA-containing formulations are less cytotoxic than DEBDA-containing ones. The formation of electrostatic complexes with salmon sperm or plasmid DNA, used as model nucleic acids, was evaluated by electrophoresis on agarose gel. The results confirmed that all the formulations studied are able to form the complex. Finally, we investigated the ability of SLN and MAD to deliver DNA into HepG2 cells, and to this purpose we exploited expression plasmids for green fluorescent protein or firefly luciferase. Although with reduced efficiency, the results showed that the produced nanocarriers are able to convey plasmids into cells. The data obtained encourage further study aimed at improving these new formulations and proposing them as novel in vitro transfection reagents with potential application to in vivo delivery of nucleic acids (1).

Industry

It also possesses the potential to be used as a building block for polyamide, cross linker for epoxy resins, precursor for pharmaceuticals, agricultural chemicals, and organic chemicals

Bio-based production of chemicals from renewable resources is becoming increasingly important for sustainable chemical industry. In this study, Escherichia coli was metabolically engineered to produce 1,3-diaminopropane (1,3-DAP), a monomer for engineering plastics. Comparing heterologous C4 and C5 pathways for 1,3-DAP production by genome-scale in silico flux analysis revealed that the C4 pathway employing Acinetobacter baumannii dat and ddc genes, encoding 2-ketoglutarate 4-aminotransferase and L-2,4-diaminobutanoate decarboxylase, respectively, was the more efficient pathway. In a strain that has feedback resistant aspartokinases, the ppc and aspC genes were overexpressed to increase flux towards 1,3-DAP synthesis. Also, studies on 128 synthetic small RNAs applied in gene knock-down revealed that knocking out pfkA increases 1,3-DAP production. Overexpression of ppc and aspC genes in the pfkA deleted strain resulted in production titers of 1.39 and 1.35 g l−1 of 1,3-DAP, respectively. Fed-batch fermentation of the final engineered E. coli strain allowed production of 13 g l−1 of 1,3-DAP in a glucose minimal medium (2).

Synonyms

  • 1,3-Propanediamine
  • 1,3-Diaminopropane
  • 1,3-PROPYLENE DIAMINE
  • 1,3-DIAMINOPROPANE;13DAP
  • 1,3-BIAMINOPROPANE
  • Trimethylenediamine

And a premise on PEG.

Since the PEG (1) family is numerous and is found in many cosmetic, cleaning and medicinal products and others, we need a cognitive premise on the subject that is rather complex from the point of view of safety because these products not only come into contact with the skin but, as in the case of medicine, they are also ingested.

PEG or polyethylene glycols polymerise the condensed ethylene oxide and water and are called polyethylene glycols, but in reality, they are complex chemical components, polymers bound together. For example,  plastic is polyethylene and has a hard consistency, while  polyethylene aggregated to the glycol forms a liquid.

The number that appears after the initials PEG represents the molecular weight and the higher this number is, the less it penetrates  the skin. 

Here below are some studies in Medicine that refer to the use of PEG Polyethylene glycol in various fields.

Intestine

Polyethylene glycol with or without electrolytes is effective for the treatment of functional constipation, both in adults and in paediatric patients, with great safety and tolerability. These preparations are the most effective osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short- and long-term. They are as effective as enemas in faecalomas, avoid the need for hospitalisation and are well tolerated by patients (especially when given without electrolytes) (2).

In the preparation  for colonoscopy,  polyethylene glycol tablets confirmed efficacy, acceptability, tolerance and safety similar to those of sodium phosphate (3).

For peripheral nerve repair (4).

Eyes

Dry eye syndrome is a disorder that affects 5-34% of the world's adult population with reduced quality of life. Artificial or lubricating tears are the most used therapy for treating this condition due to their low side effects profile, which attempt to modify the properties of the tear film. Polyethylene glycol has demonstrated clinical efficacy in the treatment of this condition (5).

Brain

Polyethylene glycol facilitates the neuroprotective effects of magnesium in head injuries (6).

Tumors

For transarterial chemoembolization, Polyethylene glycol is effective and safe for the treatment of liver cancer, as indicated by good tolerability, quality of life and high tumour response (7). 

Cosmetics

Many types of PEG are hydrophilic and are used as creams, topical dermatological preparations and in cosmetic products such as surfactants, emulsifiers, detergents, humectants and skin conditioners.

Safety varies from type to type given the structural complexity (8).

References___________________________________________________________________

(1) Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005 Oct 15;214(1-2):1-38. doi: 10.1016/j.tox.2005.06.001.

(2) Mínguez M, López Higueras A, Júdez J. Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016 Dec;108(12):790-806. doi: 10.17235/reed.2016.4571/2016.

Santos-Jasso KA, Arredondo-García JL, Maza-Vallejos J, Lezama-Del Valle P. Effectiveness of senna vs polyethylene glycol as laxative therapy in children with constipation related to anorectal malformation. J Pediatr Surg. 2017 Jan;52(1):84-88. doi: 10.1016/j.jpedsurg.2016.10.021.

(3) Chaussade S, Schmöcker C, Toulemonde P, Muñoz-Navas M, O'Mahony V, Henri F. Phosphate tablets or polyethylene glycol for preparation to colonoscopy? A multicentre non-inferiority randomized controlled trial. Surg Endosc. 2017 May;31(5):2166-2173. doi: 10.1007/s00464-016-5214-1.
Tsunoda T, Sogo T, Iwasawa K, Umetsu S, Oikawa-Kawamoto M, Inui A, Fujisawa T. Feasibility and safety of bowel cleansing using low-volume polyethylene glycol with ascorbic acid before pediatric colonoscopy: A pilot study. Dig Endosc. 2017 Mar;29(2):160-167. doi: 10.1111/den.12756.

(4) Hoffman AN, Bamba R, Pollins AC, Thayer WP. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization. J Clin Neurosci. 2017 Feb;36:125-128. doi: 10.1016/j.jocn.2016.10.032.

(5) Pérez-Balbuena AL, Ochoa-Tabares JC, Belalcazar-Rey S, Urzúa-Salinas C, Saucedo-Rodríguez LR, Velasco-Ramos R, Suárez-Sánchez RG, Rodríguez-Carrizalez AD, Oregón-Miranda AA. Efficacy of a fixed combination of 0.09 % xanthan gum/0.1 % chondroitin sulfate preservative free vs polyethylene glycol/propylene glycol in subjects with dry eye disease: a multicenter randomized controlled trial. BMC Ophthalmol. 2016 Sep 20;16(1):164. doi: 10.1186/s12886-016-0343-9.

Labetoulle M, Messmer EM, Pisella PJ, Ogundele A, Baudouin C. Safety and efficacy of a hydroxypropyl guar/polyethylene glycol/propylene glycol-based lubricant eye-drop in patients with dry eye. Br J Ophthalmol. 2017 Apr;101(4):487-492. doi: 10.1136/bjophthalmol-2016-308608.

(6) Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther. 2016 Oct;22(10):854-9. doi: 10.1111/cns.12591.

(7) Aliberti C, Carandina R, Sarti D, Mulazzani L, Catalano V, Felicioli A, Coschiera P, Fiorentini G. Hepatic Arterial Infusion of Polyethylene Glycol Drug-eluting Beads for Primary and Metastatic Liver Cancer Therapy. Anticancer Res. 2016 Jul;36(7):3515-21.

(8) Jang HJ, Shin CY, Kim KB. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol Res. 2015 Jun;31(2):105-36. doi: 10.5487/TR.2015.31.2.105. 

Evaluate