X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Zinc octadecanoate
"Descrizione"
by admin (19344 pt)
2024-Jun-09 10:08

Zinc octadecanoate o, più comunemente stearato di zinco, è il sale di zinco dell'acido stearico, comunemente utilizzato in varie applicazioni cosmetiche e industriali. È apprezzato per le sue proprietà multifunzionali, tra cui il suo ruolo come agente antiagglomerante, colorante, controllore della viscosità e slip modifier.

Composizione chimica e struttura

Lo stearato di zinco è un composto organico con la formula chimica Zn(C18H35O2)2. È costituito da ioni di zinco combinati con acido stearico, un acido grasso a catena lunga. Questa combinazione conferisce al composto le sue proprietà uniche e la sua ampia gamma di applicazioni.

Proprietà fisiche

Lo stearato di zinco si presenta tipicamente come una polvere bianca fine. È insolubile in acqua ma solubile in oli e solventi organici. Il composto è noto per la sua stabilità, resistenza al calore e capacità di agire come lubrificante, rendendolo altamente utile in varie formulazioni.

Il nome definisce la struttura della molecola:

  • Preparazione dei reagenti. Le principali materie prime includono acido stearico e un composto di zinco come solfato di zinco (ZnSO₄) o cloruro di zinco (ZnCl₂).
  • Saponificazione. L'acido stearico viene riscaldato e trattato con una soluzione di idrossido di sodio (NaOH) per formare stearato di sodio (sapone di sodio stearato).
  • Precipitazione dello stearato di zinco. Il solfato di zinco o il cloruro di zinco viene aggiunto lentamente alla soluzione di stearato di sodio con agitazione costante. Questa reazione forma un precipitato di stearato di zinco.
  • Filtrazione. La sospensione risultante viene filtrata per separare il precipitato solido di stearato di zinco dalla soluzione acquosa.
  • Lavaggio. Il precipitato di stearato di zinco viene lavato con acqua deionizzata per rimuovere eventuali impurità solubili e residui di reagenti.
  • Essiccazione. Lo stearato di zinco lavato viene essiccato a temperatura controllata per rimuovere l'umidità residua e ottenere una polvere secca.
  • Macinazione. Lo stearato di zinco essiccato viene macinato per ottenere una polvere di particelle fini e uniformi. Questo passaggio può includere l'uso di mulini a sfere o altri macchinari di macinazione.
  • Classificazione. La polvere essiccata viene classificata per garantire una dimensione delle particelle uniforme. Questo passaggio può includere la setacciatura o l'uso di classificatori d'aria.
  • Stabilizzazione. La polvere di stearato di zinco viene stabilizzata per garantirne la stabilità durante il trasporto e lo stoccaggio, prevenendo l'aggregazione e la degradazione.
  • Controllo di qualità. Lo stearato di zinco viene sottoposto a rigorosi test di qualità per assicurare che soddisfi gli standard di purezza, sicurezza e funzionalità. Questi test includono l'analisi chimica, la spettroscopia e i test fisici per determinare la dimensione delle particelle e le proprietà reologiche.

A cosa serve e dove si usa

Lo stearato di zinco è un sale derivato dall'acido stearico e dallo zinco, comunemente utilizzato in cosmetica e altre industrie per le sue proprietà lubrificanti e stabilizzanti. È particolarmente apprezzato per la sua capacità di migliorare la texture e la resistenza all'acqua dei prodotti. 

Cosmetica 

Ingrediente cosmetico soggetto a restrizioni  IV/150 come Voce pertinente negli allegati del regolamento europeo sui cosmetici n. 1223/2009. Sostanza o ingrediente segnalato: 

  • Aluminium, zinc, magnesium and calcium stearates

Cosmetica - Funzioni INCI

  • Agente antiagglomerante. Lo stearato di zinco è utilizzato come agente antiagglomerante in polveri e altri prodotti secchi per prevenire l'aggregazione e migliorare la fluidità. Aiuta a mantenere la natura scorrevole dei prodotti, migliorandone la usabilità e la durata.
  • Colorante. Sebbene lo stearato di zinco non sia un colorante in sé, è spesso utilizzato in combinazione con pigmenti per migliorare la dispersione e la stabilità nelle formulazioni cosmetiche. Aiuta a ottenere una distribuzione uniforme del colore in prodotti come fondotinta e ombretti.
  • Controllore della viscosità. Lo stearato di zinco è utilizzato per controllare la viscosità di varie formulazioni cosmetiche e industriali. Aiuta ad addensare i prodotti, fornendo la consistenza e la texture desiderate in articoli come creme, unguenti e vernici.
  • Slip modifier. Lo stearato di zinco agisce come modificatore di scivolamento nei prodotti cosmetici, riducendo l'attrito e migliorando la sensazione del prodotto sulla pelle. È comunemente utilizzato in prodotti come polveri, creme e lozioni per migliorare la loro applicazione e prestazione.

Altre applicazioni

Industria farmaceutica. Utilizzato come eccipiente in compresse e polveri per le sue proprietà lubrificanti, facilitando la compressione e la produzione (1).

Produzione di plastica. Agisce come stabilizzatore e lubrificante nel processo di produzione della plastica, migliorando le proprietà di lavorazione del materiale (2).

Industria della gomma. Impiegato per migliorare le caratteristiche di lavorazione e le prestazioni dei prodotti in gomma.


Molecular Formula    Zn(C18H35O2)2

Molecular Weight    632.3 g/mol

CAS     557-05-1

UNII    H92E6QA4FV

EC Number  209-151-9

Synonyms:

Zinc octadecanoate

Zinc distearate

Zn Stearate

Bibliografia__________________________________________________________________________

(1) Jenke D. Extraction of stearate salts from plastic materials used in pharmaceutical applications. PDA J Pharm Sci Technol. 2010 May-Jun;64(3):200-10. PMID: 21502020.

Abstract. Plastic materials are widely used in medical items such as solution containers, infusion sets, transfer tubing, devices, processing equipment and systems, filters, and the like. Components in medical items can leach out of such items when they are contacted by a therapeutic product or product-related solution. Stearic acid and stearate salts are commonly present in medical and food packaging, either as plastic additives, processing aids, or contaminants, and their leaching from plastics is well documented. With a pK(a) in the range of 5.1 to 5.6 and limited aqueous solubility (log P(o/w) greater than 8), the leaching of stearic acid (and its related metal salts) into pharmaceutical products is expected to be strongly dependent on the product's pH and polarity. In order to establish and understand the leaching behavior of stearate-containing materials, three compounds (stearic acid, calcium stearate, and zinc stearate) and four polymeric materials containing these compounds were contacted with aqueous buffers in the pH range of 2.5 to 11. The leached levels of calcium, zinc, stearate, palmitate, and total organic carbon (TOC) were measured in the resulting solutions and are reported. For materials containing only stearic acid or salts themselves, the extraction of these entities is pH-dependent. At low pH, the cation counter-ions of the stearate salts are extracted from the plastic materials by a process that can loosely be termed ion exchange. At intermediate pH, little or no extraction of the stearates occurs. At high pH, the stearates are extracted from the materials to a very limited extent due to the solubility of the acid and/or salts in the extraction medium.

(2) Han W, Zhang M, Li D, Dong T, Ai B, Dou J, Sun H. Design and Synthesis of a New Mannitol Stearate Ester-Based Aluminum Alkoxide as a Novel Tri-Functional Additive for Poly(Vinyl Chloride) and Its Synergistic Effect with Zinc Stearate. Polymers (Basel). 2019 Jun 11;11(6):1031. doi: 10.3390/polym11061031. 

Abstract. Thermal stabilizers, lubricant, and plasticizers are three crucial additives for processing poly(vinyl chloride) (PVC). In this study, a new mannitol stearate ester-based aluminum alkoxide (MSE-Al) was designed and synthesized as a novel additive for PVC. The thermal stability and processing performance of PVC stabilized by MSE-Al were evaluated by the Congo red test, conductivity measurement, thermal aging test, ultravioletevisible (UV-Vis) spectroscopy test, and torque rheometer test. Results showed that the addition of MSE-Al could not only markedly improve the long-term thermal stability of PVC, but also greatly accelerate the plasticizing and decrease the balance torque, which demonstrated that MSE-Al possessed a lubricating property. Thus, MSE-Al was demonstrated to be able to provide tri-functional additive roles, e.g., thermal stabilizer, plasticizer, and lubricant. The test results for the thermal stability of PVC indicated that the initial whiteness of PVC stabilized by MSE-Al was not good enough, thus the synergistic effect of MSE-Al with zinc stearates (ZnSt2) on the thermal stability of PVC was also investigated. The results showed that there is an appreciable synergistic effect between MSE-Al and ZnSt2. The thermal stabilization mechanism and synergism effect of MSE-Al with ZnSt2 are then discussed.

(3) Segre N, Monteiro PJ, Sposito G. Surface characterization of recycled tire rubber to be used in cement paste matrix. J Colloid Interface Sci. 2002 Apr 15;248(2):521-3. doi: 10.1006/jcis.2002.8217. 

Abstract. The surface modification of tire rubber after treatment with saturated NaOH aqueous solution was investigated by HATR infrared analysis, potentiometric titration, and contact angle measurements. Infrared analysis of the powdered treated rubber showed a decrease in absorption at 1540, 1450, and 1395 cm(-1). This decrease is attributed to the removal of zinc stearate, an additive present in tire formulations that often migrates and diffuses to the surface, resulting in poor adhesion between the rubber and other materials. The potentiometric titration of the suspension of powdered rubber in 0.1 M NaCl showed that more hydrochloric acid was consumed by the untreated rubber, most likely a result of the hyrdrolysis of the zinc stearate to the organic acid. Contact angles of flat tire pieces showed an homogeneity enhancement of the treated rubber surface. The decrease of the zinc stearate on the treated rubber surface explains the improvement in the adhesion of this material to the cement matrix, observed in a previous research. The promising results of this study are a starting point for future research on incorporating rubber particles into cementitious materials as a means of successfully utilizing the vast amounts of tire waste currently in landfills.


Evaluate