![]() | "Descrizione" di Frank123 (12416 pt) | 26-ago-2023 17:29 |
Valutazione | N. Esperti | Valutazione | N. Esperti |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
Thermus Thermophillus Ferment è un composto di origine naturale ottenuto da uno dei generi più diffusi di batteri termofili.
Il nome definisce la struttura della molecola
Descrizione delle materie prime utilizzate nella produzione
Processo di sintesi chimica industriale passo per passo
A cosa serve e dove si usa
Cosmetica
Agente condizionante della pelle. Rappresenta il perno del trattamento topico della pelle in quanto ha la funzione di ripristinare, aumentare o migliorare la tolleranza cutanea a fattori esterni, compresa la tolleranza dei melanociti. La funzione più importante dell'agente condizionante è prevenire la disidratazione della pelle, ma il tema è piuttosto complesso e coinvolge emollienti ed umettanti che possono essere aggiunti nella formulazione.
Applicazioni commerciali
Applicazioni biotecnologiche. Come selezione di mutanti termostabili da proteine mesofile per evoluzione diretta (2).
Cosmetici. Utilizzato per le sue proprietà antiossidanti e protettive per combattere lo stress ossidativo e proteggere la pelle dai danni ambientali.
Prodotti Anti-invecchiamento. Incorporato in formulazioni per contrastare i segni dell'invecchiamento e migliorare la luminosità e la texture della pelle.
Cura della Pelle Sensibile. Apprezzato per le sue proprietà lenitive, è spesso presente in prodotti destinati a pelli sensibili o irritate.
Prodotti Solari. Usato in formulazioni di creme solari per migliorare la protezione della pelle dai raggi UV e dal calore (3).
Creme Idratanti. Incluso in creme e lozioni per fornire idratazione profonda e rinforzare la barriera cutanea.
Bibliografia_____________________________________________________________________
(1) Oshima, T., & Imahori, K. (1974). Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. International Journal of Systematic and Evolutionary Microbiology, 24(1), 102-112.
Abstract. The properties of an extremely thermophilic bacterium isolated from water at a Japanese hot spring and previously named Flavobacterium thermophilum are described. The cells are gram-negative, nonsporulating, aerobic rods containing yellow pigment. The optimum temperature for growth is between 65 and 72 C, the maximum being 85 C and the minimum being 47 C. The guanine plus cytosine content of the deoxyribonucleic acid of the thermophile is 69 mol %. This microorganism is sensitive to various antibiotics including those which are known to be rather ineffective against gram-negative bacteria. Spheroplast-like bodies are formed upon treating intact cells with egg-white lysozyme at 60 C. The spheres are osmotically more stable than mesophile protoplasts, and their rupture under hypotonic conditions is not complete unless 0.5% Brij 58 is added to the suspension. Bulk protein extracted from this thermophile is much more stable to heat than mesophile proteins, and only about 10% of the total protein is denatured by heating at 110 C for 5 min. Nevertheless, the amino acid composition of the bulk protein is similar to that of mesophile proteins. As the properties of this organism are similar to those of Thermus aquaticus (Brock and Freeze) and inasmuch as Flavobacterium is a poorly defined genus, this thermophilic microorganism is transferred to the genus Thermus as T. thermophilus (Yoshida and Oshima) comb. nov. The type strain is HB8 (=ATCC 27634).
(2) Cava F, Hidalgo A, Berenguer J. Thermus thermophilus as biological model. Extremophiles. 2009 Mar;13(2):213-31. doi: 10.1007/s00792-009-0226-6.
Abstract. Thermus spp is one of the most wide spread genuses of thermophilic bacteria, with isolates found in natural as well as in man-made thermal environments. The high growth rates, cell yields of the cultures, and the constitutive expression of an impressively efficient natural competence apparatus, amongst other properties, make some strains of the genus excellent laboratory models to study the molecular basis of thermophilia. These properties, together with the fact that enzymes and protein complexes from extremophiles are easier to crystallize have led to the development of an ongoing structural biology program dedicated to T. thermophilus HB8, making this organism probably the best so far known from a protein structure point view. Furthermore, the availability of plasmids and up to four thermostable antibiotic selection markers allows its use in physiological studies as a model for ancient bacteria. Regarding biotechnological applications this genus continues to be a source of thermophilic enzymes of great biotechnological interest and, more recently, a tool for the over-expression of thermophilic enzymes or for the selection of thermostable mutants from mesophilic proteins by directed evolution. In this article, we review the properties of this organism as biological model and its biotechnological applications.
(3) Starch, M., Van Reeth, I., & Ramos, M. C. T. (2007). Expanding Silicone Technologies for Sun Care: Performance Complements Aesthetics. CHEMICAL WEEKLY-BOMBAY-, 53(14), 179.
Valuta |