Formaggio fresco spalmabile
Media gradimento : 7
| Valutazione | N. Esperti | Valutazione | N. Esperti |
|---|---|---|---|
| 1 | 6 | ||
| 2 | 7 | ||
| 3 | 8 | ||
| 4 | 9 | ||
| 5 | 10 |
0 pt da Al222
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.Valuta | Dove si trova? |
| "Descrizione" su Formaggio fresco spalmabile di Al222 (23249 pt) | 01-nov-2025 17:50 |
| Leggi il Tiiip completo | (Invia il tuo commento) |
Formaggio fresco spalmabile: formaggio cremoso tipo cream cheese (formaggio fresco a coagulazione acida; ≥33% m.g., umidità ≤55%)
Descrizione
Formaggio fresco a coagulazione acida ottenuto da panna e latte, con tessitura liscia e spalmabile e gusto lattico–leggermente acidulo.
Standard tipici: ≥33% materia grassa sul prodotto finito e ≤55% umidità (possono variare secondo mercato); pH ~4,4–4,9.
Commercializzato in panetti/foils o vaschette spalmabili, in versione neutra o aromatizzata (erbe, salmone affumicato, erba cipollina, dolce).
Valore calorico (per 100 g di prodotto)
~320–360 kcal (in funzione di grassi e umidità).
Composizione tipica full-fat: grassi 33–36 g, proteine 6–8 g, carboidrati 4–6 g (soprattutto lattosio), sale 0,7–1,5 g, acqua 50–55 g.
Principali sostanze contenute
Grasso del latte (triacilgliceroli) con profilo tipico dei latticini; proteine (caseine e sieroproteine) ~6–8% sul tal quale.
Acido lattico da fermentazione, lattosio (inferiore rispetto al latte), minerali (Ca, P), vitamine A, D, E, K.
Possibili stabilizzanti/idrocolloidi (es. farina di semi di carruba/guar/xantano, carragenina) per legare acqua e migliorare spalmabilità.
Marcatori analitici: % grasso, % umidità, % sale, pH, acidità titolabile, consistenza/viscosità, carica microbica totale.
Processo di produzione
Standardizzazione del mix panna/latte → pastorizzazione (tipicamente HTST) → inoculo con colture lattiche mesofile (Lactococcus lactis ssp. lactis/cremoris, spesso aromatizzanti) ± piccola quota di caglio per maggiore consistenza.
Acidificazione/coagulazione fino a pH 4,4–4,9 → gestione cagliata: agitazione delicata e separazione del siero (gravità, centrifugazione o ultrafiltrazione).
Omogeneizzazione/miscelazione della pasta con sale e stabilizzanti consentiti → riempimento a caldo in panetti/vaschette → raffreddamento rapido (≤4 °C) e breve maturazione di stabilizzazione.
Produzione sotto GMP/HACCP con CCP su pastorizzazione, andamento del pH, igiene e integrità delle confezioni.
Proprietà sensoriali e tecnologiche
Struttura: liscia, densa, spalmabile; gli stabilizzanti aumentano corpo e riducono sinèresi.
Comportamento a caldo/acido: può granire o separare con alte temperature, pH basso o alcol; tempering graduale o amidi migliorano la stabilità.
Funzionalità: emulsionante della fase grassa in salse/ganache; apporta pienezza, corpo e nota acidula in prodotti da forno e farciture.
Impieghi alimentari
Spalmabile per bagel, dips, cheesecake (stile New York), frosting/torte fredde, pasticceria farcita (danish), sushi/roll, salse salate (per pasta), zuppe per cremosità, terrine.
Dosaggi tipici: 10–40% della ricetta in creme/spread; 25–40% dell’impasto nelle cheesecake (in equilibrio con uova/zucchero/amido).
Nutrizione e salute
Denso energeticamente; proteine moderate; carboidrati modesti; sodio variabile (verificare etichetta).
Naturalmente senza glutine; contiene latte (allergene maggiore).
Lattosio più basso del latte ma non assente; la tolleranza è individuale.
Essendo ricco di grassi del latte, è consigliabile la moderazione della porzione e l’equilibrio con alimenti ricchi di grassi insaturi.
Profilo dei grassi
Andamento indicativo del grasso lattiero: SFA (grassi saturi) ~60–70%, MUFA (grassi monoinsaturi, prevalentemente oleico) ~25–35%, PUFA (grassi polinsaturi) ~2–5%; MCT (trigliceridi a media catena, C6–C12) ~8–12% degli acidi grassi.
TFA naturali dei ruminanti (es. vaccenico, CLA) presenti in piccole quantità, diversi dai TFA industriali.
Nota salute: linee guida dietetiche incoraggiano la sostituzione di SFA con MUFA/PUFA per un profilo lipidico più favorevole.
Qualità e specifiche (temi tipici)
Grasso del latte ≥33%, umidità ≤55%, pH 4,4–4,9, sale 0,7–1,5%.
Microbiologia: basse cariche aerobiche; patogeni assenti (in particolare Listeria monocytogenes); controllo lieviti/muffe.
Texture: spalmabilità/fermezza, sinèresi (test in centrifuga), stabilità al calore (prove di cottura).
Confezionamento: foils/vaschette con barriera a ossigeno e luce; tenuta del sigillo verificata.
Conservazione e shelf-life
Conservare in frigorifero (0–4 °C). Shelf-life chiuso tipicamente 1–3 mesi (più breve per vaschette fresche, più lunga per panetti in foil).
Dopo l’apertura: consumare entro 7–14 giorni; sconsigliato il congelamento (congelamento/scongelamento causa sinèresi e granulosità).
Allergeni e sicurezza
Contiene latte (allergene maggiore). Utilizzare latte/panna pastorizzati; versioni da latte crudo hanno rischio maggiore.
Catena del freddo, CIP e monitoraggi ambientali riducono la ricontaminazione post-pastorizzazione.
Funzioni INCI in cosmesi
Non è una voce INCI standard. Ingredienti affini: Lactis (Milk) Protein, Milk Fat/Lactis Lipida, Hydrogenated Milk Fat (emolliente, skin conditioning).
Troubleshooting
Sinèresi (rilascio di siero): stabilizzante insufficiente, sale basso, deriva di pH o congelamento → adeguare idrocolloidi, sale e pH; evitare il congelamento; migliorare omogeneizzazione.
Granuloso/cagliato: abuso termico o shock da acido/alcol → temperare e aggiungere gradualmente; ridurre il calore; usare amidi.
Sapore piatto: colture deboli o eccesso di stabilizzante → correggere dosaggio/tempo delle colture; bilanciare sale e acidità.
Shelf-life breve: cariche iniziali alte o sigilli difettosi → rafforzare pastorizzazione, igiene e controlli di confezionamento.
Sostenibilità e filiera
Il lattiero-caseario ha impronta GHG e idrica rilevante; mitigazioni: miglior efficienza alimentare, gestione metano, energia rinnovabile, cold chain ottimizzata.
Reflui trattati a target BOD/COD; imballi riciclabili; piena tracciabilità sotto GMP/HACCP.
Conclusione
Il Formaggio fresco spalmabile tipo cream cheese offre morbidezza, nota acidula e spalmabilità funzionale, eccellendo in applicazioni dolci e salate. Un controllo accurato di colture/pH, grassi/umidità, stabilizzazione e igiene della catena del freddo garantisce prodotti sicuri, stabili e coerenti sensorialmente.
Mini-glossario
SFA — grassi saturi: apporti elevati possono aumentare LDL-colesterolo.
MUFA — grassi monoinsaturi (es. oleico): in genere favorevoli/neutralmente associati ai lipidi ematici.
PUFA — grassi polinsaturi (es. linoleico/ALA): benefici se bilanciati.
TFA — grassi trans: piccole quantità naturali nei latticini (vaccenico, CLA); evitare i TFA industriali.
MCT — trigliceridi a media catena (C6–C12): presenti nel grasso del latte ~8–12% degli acidi grassi.
HTST — high-temperature short-time: pastorizzazione ~72 °C/15 s.
UHT — ultra-high temperature: ≥135 °C per pochi secondi; estende la shelf-life ma può ridurre la stabilità in cottura.
GMP/HACCP — good manufacturing practice / hazard analysis and critical control points: sistemi igienico-preventivi con CCP definiti.
CCP — critical control point: fase in cui un controllo previene/riduce un pericolo (es. pastorizzazione, sigillatura).
BOD/COD — domanda biochimica/chimica di ossigeno: indicatori dell’impatto dei reflui di processo.
pH — misura di acidità; nel cream cheese tipicamente 4,4–4,9, governa sapore, sicurezza e texture.
Bibliografia__________________________________________________________________________
Caille C, Boukraâ M, Rannou C, Villière A, Catanéo C, Lethuaut L, Lagadec-Marquez A, Bechaux J, Prost C. Analysis of Volatile Compounds in Processed Cream Cheese Models for the Prediction of "Fresh Cream" Aroma Perception. Molecules. 2023 Oct 23;28(20):7224. doi: 10.3390/molecules28207224.
Abstract. Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict "fresh cream" aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict "fresh cream" aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a "milk" odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a "granular" and "brittle" texture and a "salty" and "sour" taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for "cooked" and "chemical" aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the "fresh cream" aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics.
Andriot I, Septier C, Peltier C, Noirot E, Barbet P, Palme R, Arnould C, Buchin S, Salles C. Influence of Cheese Composition on Aroma Content, Release, and Perception. Molecules. 2024 Jul 20;29(14):3412. doi: 10.3390/molecules29143412.
Abstract. The quality of a cheese is determined by the balance of aroma compounds primarily produced by microorganisms during the transformation of milk into ripened cheese. The microorganisms, along with the technological parameters used in cheese production, influence aroma formation. The perception of these compounds is further influenced by the composition and structure of the cheese. This study aimed to characterize how cheese composition affects aroma compound production, release, and perception. Sixteen cheeses were produced under controlled conditions, followed by a quantitative descriptive analysis post ripening. Aroma composition was analyzed using HS-SPME-GC-MS, and a dynamic sensory evaluation (TCATA) was combined with nosespace analysis using PTR-ToF-MS. Image analysis was also conducted to characterize cheese structure. Cheese fat and whey lactose contents were identified as key factors in the variability of sensory attributes. GC-MS analyses identified 27 compounds correlated with sensory attributes. In terms of aroma compound release, 23 ions were monitored, with fat, salt, and lactose levels significantly affecting the release of most compounds. Therefore, cheese fat, salt, and whey lactose levels, as well as the types of microbial strains, play a role in influencing the composition, structure, release of aroma compounds, and sensory perception.
Gutiérrez-Méndez N, Balderrama-Carmona A, García-Sandoval SE, Ramírez-Vigil P, Leal-Ramos MY, García-Triana A. Proteolysis and Rheological Properties of Cream Cheese Made with a Plant-Derived Coagulant from Solanum elaeagnifolium. Foods. 2019 Jan 30;8(2):44. doi: 10.3390/foods8020044.
Abstract. Cream cheese is a fresh acid-curd cheese with pH values of 4.5⁻4.8. Some manufacturers add a small volume of rennet at the beginning of milk fermentation to improve the texture of the cream cheese. However, there is no information about the effect that proteases other than chymosin-like plant-derived proteases may have on cream cheese manufacture. This work aimed to describe some proteolytic features of the protease extracted from fruits of Solanum elaeagnifolium Cavanilles and to assess the impact that this plant coagulant has on the viscoelastic properties of cream cheeses. Results showed that caseins were not hydrolyzed extensively by this plant-derived coagulant. In consequence, the ratio of milk clotting units (U) to proteolytic activity (U-Tyr) was higher (1184.4 U/U-Tyr) than reported for other plant proteases. The plant coagulant modified neither yield nor composition of cream cheeses, but viscoelastic properties did. Cream cheeses made with chymosin had a loss tangent value (tan δ = 0.257) higher than observed in cheeses made with 0.8 mL of plant-derived coagulant per liter (tan δ = 0.239). It is likely that casein fragments released by the plant-derived coagulant improve the interaction of protein during the formation of acid curds, leading to an increase in the viscoelastic properties of cream cheese.
Bemer HL, Limbaugh M, Cramer ED, Harper WJ, Maleky F. Vegetable organogels incorporation in cream cheese products. Food Res Int. 2016 Jul;85:67-75. doi: 10.1016/j.foodres.2016.04.016.
Abstract. Edible oleogels made from rice bran wax (RBW) or ethylcellulose (EC) organogelators in combination with vegetable oils and other non-fat ingredients were used to produce oleogel cream cheese products. Four oleogel cream cheese products, two containing RBW and two with EC, were prepared and compared to control samples including full-fat and fat-free commercial cream cheese samples. Upon compositional analysis, all the oleogel cream cheese (OCC) samples showed approximately a 25% reduction in total fat content in comparison to the full-fat commercial control. More specifically by the replacement of saturated fat with healthier unsaturated fat alternatives, an improved fatty acid profile of cream cheese products was documented. Similar compositional analysis was also performed on a cream cheese sample made with non-gelled vegetable oil. Using a single penetration test and a strain sweep test, oleogel cream cheese samples prepared with RBW displayed comparable hardness, spreadability, and stickiness values to the full-fat commercial control sample. EC OCC samples also showed comparable hardness, spreadability and stickiness values but exhibited reduced adhesiveness values compared to the full-fat control. The successful microstructural incorporation of oleogels into a cream cheese, along with similarities in fat globule size, between OCC samples and commercial controls was confirmed with Confocal Laser Scanning Microscopy. The similarity in microstructure can be accounted for the similarities in textural properties between the OCC samples and the full-fat control. These results provide a thorough characterization of the use of RBW and EC in oleogels and their potential as a healthy alternative to saturated fat in cream cheese applications. Published by Elsevier Ltd.
Daigle A, Roy D, Bélanger G, Vuillemard JC. Production of probiotic cheese (cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis. J Dairy Sci. 1999 Jun;82(6):1081-91. doi: 10.3168/jds.S0022-0302(99)75330-0.
Abstract. Probiotic cheeses (Cheddar-like cheese) were produced with microfiltered milk standardized with cream enriched with native phosphocaseinate retentate and fermented by Bifidobacterium infantis. During the manufacture and storage of cheeses, viability of the bifidobacteria was determined. Biochemical changes such as proteolysis, sugar metabolism, and organic acids production were estimated. No bifidobacteria growth was observed during cheese-making steps. Bifidobacteria survived very well in cheeses packed in vacuum sealed bags kept at 4 degrees C for 84 d and remained above 3 x 10(6) cfu/g of cheese. No significant difference was observed between cheeses produced with or without bifidobacteria for fat, protein, moisture, salt, ash, or pH. After 12 wk of storage, more than 56% of the as1-CN was hydrolyzed in cheeses that were produced with bifidobacteria and inoculated at 10(8) cfu/g in the cream, and > 45% of hydrolysis was observed in the control cheese. However, no significant differences in the electrophoretic sodium dodecyl sulfate-PAGE patterns were observed in cheeses at any period of storage. At the first day after manufacture, lactose was completely hydrolyzed in cheeses made with bifidobacteria, which suggested high beta-galactosidase activity by B. infantis. Small quantities of acetic acid were detected in bifidus cheeses. The results indicated that B. infantis introduced into hard pressed cheese exhibited excellent viability during storage for 12 wk and could be metabolically active.
| Iscriviti per poter valutare questo oggetto, le sue recensioni e per contribuire a Tiiips.ValutaChiudi | (0 commenti) |
Leggi altri Tiiips su questo oggetto in Inglese (1)
Principali sostanze contenute:   Ultimo aggiornamento:   2025-11-01 17:51:19 | Kcal/100g:   360 Famiglia:   Fattori di minaccia:   |
