Halopteris Scoparia
Rating : 7
Evaluation | N. Experts | Evaluation | N. Experts |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
0 pts from Al222
Sign up to vote this object, vote his reviews and to contribute to Tiiips.Evaluate | Where is this found? | ![]() |
![]() | "Descrizione" about Halopteris Scoparia by Al222 (21098 pt) | 2025-Jan-23 19:02 | ![]() |
Read the full Tiiip | (Send your comment) |
Halopteris scoparia is a species of brown alga belonging to the family Stypocaulaceae. This marine macroalga is commonly found in intertidal and shallow subtidal zones in temperate and subtropical regions. Recognizable by its finely branched, bush-like appearance, it plays a significant role in marine ecosystems as a habitat and food source. It is also being studied for its potential applications in pharmaceuticals, cosmetics, and bioremediation.
Halopteris scoparia contains a variety of bioactive compounds:
Sustainable harvesting of Halopteris scoparia is important to maintain its ecological role:
Agriculture:
Health and Nutrition:
Cosmetics:
Biotechnology and Environmental Applications:
Medical:
Cosmetic:
Agricultural:
Environmental:
Environmental Benefits:
Sustainability:
Safety:
The biochemical composition of Halopteris scoparia makes it a promising candidate for various applications. Ongoing research is exploring its potential in pharmaceuticals, functional foods, and environmental remediation.
References__________________________________________________________________________
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One. 2021 May 13;16(5):e0250954. doi: 10.1371/journal.pone.0250954.
Abstract. Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Hadjkacem F, Elleuch J, Pierre G, Fendri I, Michaud P, Abdelkafi S. Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria. Environ Technol. 2024 Jun;45(15):2923-2934. doi: 10.1080/09593330.2023.2195562.
Abstract. Algae constitute a significant part of marine biodiversity. They represent a renewable source of bioactive metabolites from drug development and therapeutic fields. Fucoxanthin and β-carotene from the brown macroalgae Halopteris scoparia, were extracted using conventional organic solvent extraction, then purified, to homogeneity, based on various chromatographic principles. Their effects on digestive enzymes and harmful bacteria were investigated. The capacities of both purified pigments to inhibit α-amylase and trypsin enzymes were evaluated. Purified fucoxanthin and β-carotene exhibited interesting α-amylase inhibition activities, with IC50 of 300 and 500 µg/mL, respectively. Moreover, trypsin inhibition activities were detected using purified these two pigments. The antibacterial potential of the purified pigments was evaluated. β-carotene showed to be a great antibacterial natural compound against gram-positive and gram-negative bacteria such as Listeria monocytogenes, Staphylococcus aureus and Salmonella enterica with Minimal Inhibitory Concentration (MIC) of about 0.225, 0.1125, 0.225 µg/mL, respectively. Those findings are in favor of the exploitation of H. scoparia pigments in therapeutic fields as an antidiabetic source directly by the inhibition of α-amylase and trypsin as well as antibacterial agents against gastrointestinal infections.
Čagalj M, Radman S, Šimat V, Jerković I. Detailed Chemical Prospecting of Volatile Organic Compounds Variations from Adriatic Macroalga Halopteris scoparia. Molecules. 2022 Aug 5;27(15):4997. doi: 10.3390/molecules27154997.
Abstract. The present study aimed to isolate volatile organic compounds (VOCs) from fresh (FrHSc) and air-dried (DrHSc) Halopteris scoparia (from the Adriatic Sea) by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and to analyse them by gas chromatography and mass spectrometry (GC-MS). The impact of the season of growth (May-September) and air-drying on VOC composition was studied for the first time, and the obtained data were elaborated by principal component analysis (PCA). The most abundant headspace compounds were benzaldehyde, pentadecane (a chemical marker of brown macroalgae), and pentadec-1-ene. Benzaldehyde abundance decreased after air-drying while an increment of benzyl alcohol after drying was noticed. The percentage of pentadecane and heptadecane increased after drying, while pentadec-1-ene abundance decreased. Octan-1-ol decreased from May to September. In HD-FrHSc, terpenes were the most abundant in June, July, and August, while, in May and September, unsaturated aliphatic compounds were dominant. In HD-DrHSc terpenes, unsaturated and saturated aliphatic compounds dominated. (E)-Phytol was the most abundant compound in HD-FrHSc through all months except September. Its abundance increased from May to August. Two more diterpene alcohols (isopachydictyol A and cembra-4,7,11,15-tetraen-3-ol) and sesquiterpene alcohol gleenol were also detected in high abundance. Among aliphatic compounds, the dominant was pentadec-1-ene with its peak in September, while pentadecane was present with lower abundance. PCA (based on the dominant compound analyses) showed distinct separation of the fresh and dried samples. No correlation was found between compound abundance and temperature change. The results indicate great seasonal variability of isolated VOCs, as well among fresh and dried samples, which is important for further chemical biodiversity studies.
Sign up to vote this object, vote his reviews and to contribute to Tiiips.EvaluateClose | (0 comments) |
Read other Tiiips about this object in __Italiano (1)
Hardiness: Hardiness: Natural fertilizer: Hazards/diseases: Last update: 2025-01-23 18:54:59 | Sun exposure: Family: Commercial fertilizer: Main substances contained:
|