![]() | "Descrizione" by admin (19547 pt) | 2024-Sep-25 15:21 |
Nicotiana benthamiana è una specie di tabacco appartenente alla famiglia delle Solanaceae, originaria dell'Australia e non coltivata tipicamente per scopi commerciali. La sua importanza risiede nella ricerca scientifica, dove serve come strumento cruciale grazie alla sua malleabilità genetica e al rapido ciclo di crescita.
Regno: Plantae
Classe: Tracheofiti, Angiosperme, Eudicotiledoni, Asteridi
Ordine: Solanales
Famiglia: Solanaceae
Genere: Nicotiana
Specie: N. benthamiana
N. benthamiana raggiunge un'altezza di 1-2 metri con un aspetto cespuglioso, presentando grandi foglie vellutate che sono appiccicose al tatto. I fiori della pianta sono bianchi e tubolari, fioriscono profusamente e attirano gli impollinatori, sebbene la pianta sia principalmente propagata attraverso semi in ambienti di ricerca.
Il profilo chimico di questa pianta include livelli di nicotina inferiori rispetto al tabacco commerciale ma contiene altri alcaloidi significativi e vari composti difensivi come gli inibitori delle proteinasi e i polifenoli. Queste sostanze contribuiscono alla sua utilità negli studi di interazione pianta-patogeno.
Per coltivare Nicotiana benthamiana:
Principalmente, Nicotiana benthamiana è strumentale nella biologia molecolare, fungendo da modello per studiare le malattie virali nelle piante e come sistema di produzione per proteine farmaceutiche, inclusi anticorpi e vaccini.
Sebbene Nicotiana benthamiana sia considerata sicura in ambienti controllati (es. laboratori), il suo contenuto di alcaloidi richiede una manipolazione attenta per evitare potenziali tossicità. A livello ambientale, si dovrebbero prendere precauzioni per assicurarsi che non sfugga alla coltivazione e si stabilisca in ecosistemi non nativi, dove potrebbe competere con la flora locale. Si enfatizzano pratiche di ricerca sostenibili ed etiche per mitigare qualsiasi impatto ecologico.
Bibliografia__________________________________________________________________________
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. Annu Rev Phytopathol. 2018 Aug 25;56:405-426. doi: 10.1146/annurev-phyto-080417-050141.
Abstract. A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact. 2008 Aug;21(8):1015-26. doi: 10.1094/MPMI-21-8-1015.
Abstract. Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Reed J, Osbourn A. Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Rep. 2018 Oct;37(10):1431-1441. doi: 10.1007/s00299-018-2296-3.
Abstract. Terpenoids are the most structurally diverse class of plant natural products with a huge range of commercial and medical applications. Exploiting this enormous potential has historically been hindered due to low levels of these compounds in their natural sources, making isolation difficult, while their structural complexity frequently makes synthetic chemistry approaches uneconomical. Engineering terpenoid biosynthesis in heterologous host production platforms provides a means to overcome these obstacles. In particular, plant-based production systems are attractive as they provide the compartmentalisation and cofactors necessary for the transfer of functional pathways from other plants. Nicotiana benthamiana, a wild relative of tobacco, has become increasingly popular as a heterologous expression platform for reconstituting plant natural product pathways, because it is amenable to Agrobacterium-mediated transient expression, a scalable and highly flexible process that enables rapid expression of genes and enzymes from other plant species. Here, we review recent work describing terpene production in N. benthamiana. We examine various strategies taken to engineer this host for increased production of the target metabolite. We also look at how transient expression can be utilised for rapid generation of molecular diversity, including new-to-nature products. Finally, we highlight current issues surrounding this expression platform and discuss the future directions and developments which will be needed to fully realise the potential of this system.
Evaluate |