![]() | "Descrizione" by Al222 (21098 pt) | 2025-Jan-23 18:43 |
Ascophyllum nodosum is a large, brown alga belonging to the family Fucaceae. Found abundantly in the intertidal zones of the North Atlantic Ocean, this seaweed is renowned for its high nutritional content, environmental adaptability, and diverse applications in agriculture, cosmetics, and health supplements. Its knotted appearance, formed by air bladders along its fronds, gives it the common name "Knotted Wrack."
Ascophyllum nodosum is rich in bioactive compounds, making it highly valuable for various applications:
Harvesting Ascophyllum nodosum sustainably is essential to preserve its ecological role:
Ascophyllum nodosum has a wide range of applications:
Agriculture:
Health and Nutrition:
Cosmetics:
Industrial Applications:
Medical:
Environmental:
Culinary:
Environmental Benefits:
Sustainability:
Safety:
The unique biochemical properties of Ascophyllum nodosum continue to be a focus of research in fields such as nutrition, agriculture, and environmental science. Studies are exploring its applications in functional foods, pharmaceuticals, and sustainable farming practices. Its potential for carbon sequestration and bioremediation highlights its importance in combating climate change and preserving marine ecosystems.
References__________________________________________________________________________
Gisbert M, Franco D, Sineiro J, Moreira R. Antioxidant and Antidiabetic Properties of Phlorotannins from Ascophyllum nodosum Seaweed Extracts. Molecules. 2023 Jun 23;28(13):4937. doi: 10.3390/molecules28134937.
Abstract. Seaweeds have gained considerable attention in recent years due to their potential health benefits and high contents of bioactive compounds. This review focuses on the exploration of seaweed's health-promoting properties, with particular emphasis on phlorotannins, a class of bioactive compounds known for their antioxidant and antidiabetic properties. Various novel and ecofriendly extraction methods, including solid-liquid extraction, ultrasound-assisted extraction, and microwave-assisted extraction are examined for their effectiveness in isolating phlorotannins. The chemical structure and isolation of phlorotannins are discussed, along with methods for their characterization, such as spectrophotometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and chromatography. Special attention is given to the antioxidant activity of phlorotannins. The inhibitory capacities of polyphenols, specifically phlorotannins from Ascophyllum nodosum against digestive enzymes, such as α-amylase and α-glucosidase, are explored. The results suggest that polyphenols from Ascophyllum nodosum seaweed hold significant potential as enzyme inhibitors, although the inhibitory activity may vary depending on the extraction conditions and the specific enzyme involved. In conclusion, seaweed exhibits great potential as a functional food ingredient for promoting health and preventing chronic diseases. Overall, this review aims to condense a comprehensive collection of high-yield, low-cost, and ecofriendly extraction methods for obtaining phlorotannins with remarkable antioxidant and antidiabetic capacities.
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Daurtseva AV, Flisyuk EV, Generalova YE, Terninko II, Shikov AN. Ascophyllum nodosum (Linnaeus) Le Jolis from Arctic: Its Biochemical Composition, Antiradical Potential, and Human Health Risk. Mar Drugs. 2024 Jan 19;22(1):48. doi: 10.3390/md22010048.
Abstract. Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.
Usov AI, Bilan MI, Ustyuzhanina NE, Nifantiev NE. Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus vesiculosus and Ascophyllum nodosum. Mar Drugs. 2022 Oct 13;20(10):638. doi: 10.3390/md20100638.
Abstract. Preparations of sulfated polysaccharides obtained from brown algae are known as fucoidans. These biopolymers have attracted considerable attention due to many biological activities which may find practical applications. Two Atlantic representatives of Phaeophyceae, namely, Fucus vesiculosus and Ascophyllum nodosum, belonging to the same order Fucales, are popular sources of commercial fucoidans, which often regarded as very similar in chemical composition and biological actions. Nevertheless, these two fucoidan preparations are polysaccharide mixtures which differ considerably in amount and chemical nature of components, and hence, this circumstance should be taken into account in the investigation of their biological properties and structure-activity relationships. In spite of these differences, fractions with carefully characterized structures prepared from both fucoidans may have valuable applications in drug development.
Evaluate |