App "Tiiips Ingredients Pro", Live Healthier!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Oatmeal
"Descrizione"
by AColumn (9300 pt)
2024-Apr-13 15:43

Review Consensus: 10 Rating: 10 Number of users: 1
Evaluation  N. ExpertsEvaluation  N. Experts
1
  
6
  
2
  
7
  
3
  
8
  
4
  
9
  
5
  
10
  1

La farina d'avena si ricava dalla macinazione della pianta Avena sativa appartenente alla famiglia delle Poaceae. A differenza della farina integrale è una farina raffinata quindi conserva solo una parte delle proprietà nutritive della pianta.

Farina d'avena si riferisce tipicamente al prodotto ottenuto da avena che è stata macinata, tagliata in pezzi (steel-cut), o laminata. Può essere usata per preparare un cereale caldo, aggiunta ai prodotti da forno o usata in varie applicazioni culinarie.

La farina d'avena, comunemente nota come oatmeal, è realizzata macinando i chicchi di avena interi. Questa farina può variare nella consistenza, da fine a grossolana, e contiene fibre solubili, il suo apporto di proteine e una varietà di vitamine e minerali essenziali. È un ingrediente popolare per la colazione, soprattutto sotto forma di porridge, ma anche usata in prodotti da forno come biscotti e pane.

Profilo Nutrizionale (per 100 grammi):

  • Calorie Circa 389 kcal.
  • Proteine Circa 16,9 grammi, rendendola una fonte significativa di proteine vegetali.
  • Grassi Circa 6,9 grammi, con una predominanza di acidi grassi insaturi.
  • Carboidrati Circa 66,3 grammi, di cui gran parte sono fibre.
  • Fibre Circa 10,6 grammi, che aiutano a migliorare la digestione e possono contribuire a regolare i livelli di colesterolo nel sangue.
  • Vitamine e minerali Contiene vitamine del gruppo B, magnesio, ferro, fosforo, zinco e selenio.

Considerazioni

La farina d'avena è particolarmente apprezzata per i suoi benefici per la salute cardiovascolare, dovuti principalmente alla presenza di beta-glucano, una fibra solubile che aiuta a ridurre il colesterolo LDL. È anche una scelta popolare per chi cerca di gestire il peso o il diabete grazie alla sua capacità di fornire energia a rilascio lento.

Uso in Cucina La farina d'avena può essere cotta per creare porridge, aggiunta ai frullati per aumentare l'apporto di fibre, o utilizzata in prodotti da forno come ingredienti ricchi di fibre.

Benefici per la Salute Supporta la salute digestiva, aiuta nella regolazione della glicemia e contribuisce alla salute cardiovascolare.

Conservazione Conservare in un contenitore ermetico in un luogo fresco e asciutto per preservare la freschezza e le proprietà nutrizionali.

Processo di produzione industriale

  • Selezione. La produzione di farina d'avena inizia con la selezione e la raccolta di avena di alta qualità, assicurando che i chicchi siano maturi e privi di impurità.
  • Pulizia. L'avena raccolta viene pulita per rimuovere eventuali impurità, come terra, pietre e altri residui vegetali, garantendo che solo i chicchi puliti procedano alla fase successiva.
  • Decorticazione. L'avena viene sottoposta a decorticazione per rimuovere il guscio esterno. Questo processo lascia i chicchi di avena nudi, noti come groats, che contengono l'intero valore nutrizionale del chicco.
  • Stabilizzazione. I groats vengono poi stabilizzati attraverso un processo di riscaldamento leggero. Questo passaggio inattiva gli enzimi che possono causare il rancidimento, migliorando la durata di conservazione e preservando il sapore.
  • Macinazione. I groats stabilizzati vengono macinati in una farina fine. La macinazione viene eseguita con cura per mantenere la temperatura controllata, evitando il surriscaldamento che potrebbe degradare i nutrienti.
  • Setacciatura. La farina d'avena viene setacciata per garantire una consistenza uniforme, rimuovendo eventuali pezzi più grandi non completamente macinati.

La farina d'avena è ricca di fibre, in particolare beta-glucano, benefico per la salute del cuore e il controllo della glicemia. Contiene anche una buona quantità di proteine, vitamine e minerali, inclusi manganese, fosforo, magnesio e ferro.

Inoltre racchiude una buona quantità di potassio e di vitamina B ed è uno tra i cereali che hanno un indice glicemico particolarmente basso, quindi adatto per celiaci.

La farina d'avena è ricca di fibre, in particolare beta-glucano, benefico per la salute del cuore e il controllo della glicemia. Contiene anche una buona quantità di proteine, vitamine e minerali, inclusi manganese, fosforo, magnesio e ferro.

Cuore. Il consumo regolare di farina d'avena può aiutare a ridurre i livelli di colesterolo e ridurre il rischio di malattie cardiache grazie al suo contenuto di fibre solubili (1).

Glicemia. Il beta-glucano nella farina d'avena aiuta a rallentare l'assorbimento dei carboidrati nel flusso sanguigno, favorendo il controllo della glicemia e rendendola una buona scelta dietetica per le persone con diabete (2).

Digestione. Le fibre nella farina d'avena supportano la salute digestiva, aiutando a prevenire la costipazione, promuovere movimenti intestinali regolari ed ha un effetto sulle funzioni microbiche intestinali  (3).

Versatilità. La farina d'avena può essere utilizzata in varie applicazioni culinarie, dai cereali per la colazione ai prodotti da forno. Può essere trasformata in porridge, aggiunta ai prodotti da forno come biscotti e pane, o utilizzata come addensante in zuppe e stufati.

Peso. L'alto contenuto di fibre nella farina d'avena può aiutare a sentirsi sazi più a lungo, potenzialmente favorendo la gestione del peso riducendo l'apporto calorico complessivo.

Pelle. La farina d'avena colloidale (farina d'avena finemente macinata) ha proprietà che possono lenire irritazioni e pruriti della pelle, rendendola un ingrediente benefico nei prodotti per la cura della pelle per condizioni come eczema e eruzioni cutanee (4).

Studi più recenti hanno dimostrato la capacità antiossidante di questo cereale (5).

    Farina d'avena studi

Bibliografia________________________________________________________________________

(1) Kwok CS, Gulati M, Michos ED, Potts J, Wu P, Watson L, Loke YK, Mallen C, Mamas MA. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019 Sep;26(13):1415-1429. doi: 10.1177/2047487319843667. Epub 2019 Apr 11. PMID: 30971126.

Abstract. Aims: The optimal diet for cardiovascular health is controversial. The aim of this review is to summarize the highest level of evidence and rank the risk associated with each individual component of diet within its food group. Methods and results: A systematic search of PudMed was performed to identify the highest level of evidence available from systematic reviews or meta-analyses that evaluated different dietary components and their associated risk of all-cause mortality and cardiovascular disease. A total of 16 reviews were included for dietary food item and all-cause mortality and 17 reviews for cardiovascular disease. Carbohydrates were associated with a reduced risk of all-cause mortality (whole grain bread: relative risk (RR) 0.85, 95% confidence interval (CI) 0.82-0.89; breakfast cereal: RR 0.88, 95% CI 0.83-0.92; oats/oatmeal: RR 0.88, 95% CI 0.83-0.92). Fish consumption was associated with a small benefit (RR 0.98, 95% CI 0.97-1.00) and processed meat appeared to be harmful (RR 1.25, 95% CI 1.07-1.45). Root vegetables (RR 0.76, 95% CI 0.66-0.88), green leafy vegetables/salad (RR 0.78, 95% CI 0.71-0.86), cooked vegetables (RR 0.89, 95% CI 0.80-0.99) and cruciferous vegetables (RR 0.90, 95% CI 0.85-0.95) were associated with reductions in all-cause mortality. Increased mortality was associated with the consumption of tinned fruit (RR 1.14, 95% CI 1.07-1.21). Nuts were associated with a reduced risk of mortality in a dose-response relationship (all nuts: RR 0.78, 95% CI 0.72-0.84; tree nuts: RR 0.82, 95% CI 0.75-0.90; and peanuts: RR 0.77, 95% CI 0.69-0.86). For cardiovascular disease, similar associations for benefit were observed for carbohydrates, nuts and fish, but red meat and processed meat were associated with harm. Conclusions: Many dietary components appear to be beneficial for cardiovascular disease and mortality, including grains, fish, nuts and vegetables, but processed meat and tinned fruit appear to be harmful.

(2) Missimer A, DiMarco DM, Andersen CJ, Murillo AG, Vergara-Jimenez M, Fernandez ML. Consuming Two Eggs per Day, as Compared to an Oatmeal Breakfast, Decreases Plasma Ghrelin while Maintaining the LDL/HDL Ratio. Nutrients. 2017 Jan 29;9(2):89. doi: 10.3390/nu9020089. 

Abstract. Eggs contain high quality protein, vitamins, minerals and antioxidants, yet regular consumption is still met with uncertainty. Therefore, the purpose of this study was to compare the effects of consuming two eggs per day or a heart-healthy oatmeal breakfast on biomarkers of cardiovascular disease (CVD) risk and satiety measures in a young, healthy population. Fifty subjects participated in a randomized crossover clinical intervention; subjects were randomly allocated to consume either two eggs or one packet of oatmeal per day for breakfast for four weeks. After a three-week washout period, participants were allocated to the alternative breakfast. Fasting blood samples were collected at the end of each intervention period to assess plasma lipids and plasma ghrelin. Subjects completed visual analog scales (VAS) concurrent to dietary records to assess satiety and hunger. Along with an increase in cholesterol intake, there were significant increases in both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol following the egg consumption period (p < 0.01). However, there was no difference in the LDL/HDL ratio, a recognized biomarker of CVD risk, nor in the plasma glucose, triglycerides or liver enzymes, between diet periods. Several self-reported satiety measures were increased following the consumption of eggs, which were associated with lower plasma ghrelin concentrations (p < 0.05). These results demonstrate that compared to an oatmeal breakfast, two eggs per day do not adversely affect the biomarkers associated with CVD risk, but increase satiety throughout the day in a young healthy population.

(3) Valeur J, Puaschitz NG, Midtvedt T, Berstad A. Oatmeal porridge: impact on microflora-associated characteristics in healthy subjects. Br J Nutr. 2016 Jan 14;115(1):62-7. doi: 10.1017/S0007114515004213.

Abstract. Oatmeal porridge has been consumed for centuries and has several health benefits. We aimed to investigate the effect of oatmeal porridge on gut microflora functions. A total of ten healthy subjects ingested 60 g oatmeal porridge daily for 1 week. The following microflora-associated characteristics were assessed before and after the intervention: intestinal gas production following lactulose ingestion, faecal excretion of SCFA and faecal levels of urease and β-galactosidase. In addition, rectal levels of PGE2 were measured. Microbial fermentation as evaluated by intestinal gas production and excretion of SCFA did not change significantly following the dietary intervention. However, faecal levels of β-galactosidase and urease decreased after eating oatmeal porridge (P=0·049 and 0·031, respectively). Host inflammatory state, as measured by rectal levels of PGE2, also decreased, but the change was not significant (P=0·168). The results suggest that oatmeal porridge has an effect on gut microbial functions and may possess potential prebiotic properties that deserve to be investigated further.

(4) Capone K, Kirchner F, Klein SL, Tierney NK. Effects of Colloidal Oatmeal Topical Atopic Dermatitis Cream on Skin Microbiome and Skin Barrier Properties. J Drugs Dermatol. 2020 May 1;19(5):524-531. 

Abstract. Atopic dermatitis is characterized by dry, itchy, inflamed skin with a dysbiotic microbiome. In this clinical study (NCT03673059), we compared the effects of an eczema cream containing 1% colloidal oat and a standard moisturizer on the skin microbiome and skin barrier function of patients with mild to moderate eczema. Patients were randomly assigned to treatment with 1% colloidal oat eczema cream or a standard, non-fragranced daily moisturizer. Treatment lasted 14 days, followed by a 7-day regression period. Of 61 patients who completed the study, 30 received the 1% colloidal oat eczema cream and 31 received the standard moisturizer. At 14 days, the 1% colloidal oat eczema cream reduced mean Eczema Area Severity Index and Atopic Dermatitis Severity Index scores by 51% and 54%, respectively. Unlike treatment with the standard moisturizer, treatment with the 1% colloidal oat eczema cream was associated with trends towards lower prevalence of Staphylococcus species and higher microbiome diversity at lesion sites. The 1% colloidal oat eczema cream significantly improved skin pH, skin barrier function, and skin hydration from baseline to day 14, whereas the standard moisturizer improved hydration. Overall, the results demonstrate that topical products can have differing effects on the skin barrier properties and the microbiome. Importantly, we show that the use of a 1% colloidal oat eczema cream improves microbiome composition and significantly repairs skin barrier defects. J Drugs Dermatol. 2020;19(5):   doi:10.36849/JDD.2020.4924.

(5) Esfandi R, Willmore WG, Tsopmo A. Antioxidant and Anti-Apoptotic Properties of Oat Bran Protein Hydrolysates in Stressed Hepatic Cells.   Foods. 2019 May 11;8(5). pii: E160. doi: 10.3390/foods8050160.

Abstract. The objective of this work was to find out how the method to extract proteins and subsequent enzymatic hydrolysis affect the ability of hepatic cells to resist oxidative stress. Proteins were isolated from oat brans in the presence of Cellulase (CPI) or Viscozyme (VPI). Four protein hydrolysates were produced from CPI and four others from VPI when they treated with Alcalase, Flavourzyme, Papain, or Protamex. Apart from CPI-Papain that reduced the viability of cell by 20%, no other hydrolysate was cytotoxic in the hepatic HepG2 cells. In the cytoprotection test, VPI-Papain and VPI-Flavourzyme fully prevented the damage due to peroxyl radical while CPI-Papain and CPI-Alcalase enhanced the cellular damage. Cells treated with VPI-hydrolysates reduced intracellular reactive oxygen species (ROS) by 20-40% and, also increased the intracellular concentration of glutathione, compared to CPI-hydrolysates. In antioxidant enzyme assays, although all hydrolysates enhanced the activity of both superoxide dismutase and catalase by up to 2- and 3.4-fold, respectively relative the control cells, the largest increase was due to VPI-Papain and VPI-Flavourzyme hydrolysates. In caspase-3 assays, hydrolysates with reduced ROS or enhanced antioxidant enzyme activities were able to reduce the activity of the pro-apoptotic enzyme, caspase-3 indicating that they prevented oxidative stress-induced cell death.

Evaluate